Platinum-catalyzed 1,4-Addition of Arylboronic Acids to β -Substituted α , β -Unsaturated Ketones

Tamio Hayashi* and Keigo Sasaki

Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502

(Received May 23, 2008; CL-080522; E-mail: thayashi@kuchem.kyoto-u.ac.jp)

Platinum salts represented by K₂PtCl₄ were found to catalyze the 1,4-addition of arylboronic acids to β -substituted α , β -unsaturated ketones to give high yields of β -arylated ketones. The reaction is completed in 1 h in the presence of 1 mol % of the catalyst in dioxane/H₂O at 70 °C.

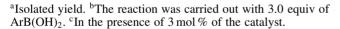
Catalytic 1,4-addition of organoboronic acids to α,β -unsaturated ketones and other electron-deficient olefins has been attracting considerable attention owing to its high utility in organic synthesis.¹ The reaction was first reported by Miyaura et al. in 1997 to be catalyzed by a rhodium complex,^{2,3} and the rhodium-catalyzed 1,4-addition reactions have been extended successfully to catalytic asymmetric reactions by use of rhodium catalysts bearing chiral phosphine or diene ligands.^{4,5} Palladium-phosphine complexes were also found to be active catalysts for the 1,4-addition of arylboronic acids.⁶ More recently, the 1,4addition was reported to be catalyzed by nickel⁷ and ruthenium⁸ complexes. Another new entry into the 1,4-addition catalyst group is platinum. A platinacycle generated by ortho-platination of tri(2,4-di-tert-butylphenyl)phosphite was reported by Bedford et al.⁹ and by Hu et al.¹⁰ to catalyze the 1,4-addition of phenylboronic acid to chalcone. Here, we report that the 1.4-addition of arylboronic acids to α . β -unsaturated ketones is efficiently catalyzed by simple platinum salts such as K₂PtCl₄ and PtCl₂ under mild conditions without any additional ligands (eq 1).

$$\mathbb{R}^{1} \xrightarrow{O} \mathbb{R}^{2} + \operatorname{ArB}(OH)_{2} \xrightarrow{K_{2}PtCl_{4} \text{ or } PtCl_{2} (1 \text{ mol } \%)}{KOH (1.0 \text{ equiv})} \xrightarrow{R^{1} O} \mathbb{R}^{1} \xrightarrow{R^{2}} \mathbb{R}^{2} (1)$$

$$\stackrel{O}{\underset{(1.5 \text{ equiv})}{1.5 \text{ equiv}} \xrightarrow{O} \mathbb{C}, 1 \text{ h}} \stackrel{O}{\underset{n \neq 0}{1.5 \text{ equiv}}} \xrightarrow{R^{2} (1)}{\operatorname{high yields}} = \mathbb{R}^{2} (1)$$

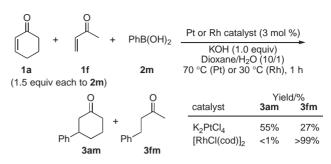
In the first set of experiments, we examined several platinum salts and complexes (3 mol %) for their catalytic activity toward the addition of phenylboronic acid (2m) to 2-cyclohexen-1-one (1a) (Table 1). It was found that K_2PtCl_4 is an efficient catalyst, giving a quantitative yield of 1,4-addition product 3am in the presence of KOH (1 equiv) in dioxane/H₂O (10/1) at 70 °C for 4 h (Entry 1). The catalytic activity of K₂PtCl₄ is so high that the catalyst loading can be reduced to 1 mol % and the reaction time can be shortened to 1 h while maintaining the high yield of 3am (Entry 2). The use of KOH is important for the present reaction. It can be replaced by NaOH or K₃PO₄, but the 1,4-addition did not take place without base additives (Entries 4-7). $PtCl_2$ and platinum/olefin complexes, $[PtCl_2(C_2H_4)]_2$ and PtCl₂(cod), are as catalytically active as K₂PtCl₄ (Entries 8-11). A lower yield (70%) of **3am** was observed in the presence of PtCl₂(PPh₃)₂ (Entry 11). The catalytically active species may be a phosphine-free platinum complex generated by dissociation of PPh₃ from PtCl₂(PPh₃)₂, considering that the reaction is not catalyzed by other platinum/phosphine complexes where the phosphine dissociation is less probable (Entries 12-14).

Table 1. Platinum-catalyzed 1,4-addition of phenylboronicacid (2m) to 2-cyclohexen-1-one (1a)


0 Ia	+ PhB(OH) ₂ (2m) (1.5 equiv)	platinum car additiv Dioxan	Ph 3am		
Entry	Catalyst	Additive	<i>T</i> ∕°C	Time /h	Yield/% ^a 3am
1	K ₂ PtCl ₄	KOH	70	4	>98
2 ^b	K_2PtCl_4	KOH	70	1	>98
3	K_2PtCl_4	KOH	30	24	>98
4	K_2PtCl_4	_	70	4	0
5	K_2PtCl_4	NaOH	70	4	>98
6	K_2PtCl_4	K_3PO_4	70	4	>98
7	K_2PtCl_4	NEt ₃	70	4	0
8	PtCl ₂	KOH	70	4	>98
9	$[PtCl_2(C_2H_4)]_2$	KOH	70	4	>98
10	$PtCl_2(cod)$	KOH	70	4	>98
11	$PtCl_2(PPh_3)_2$	KOH	70	4	70
12	PtCl ₂ (PEt ₃) ₂	KOH	70	4	0
13	PtCl ₂ (dppe)	KOH	70	4	0
14	PtCl ₂ (binap)	KOH	70	4	0
15	Pt(dba) ₂	KOH	70	4	55

^aDetermined by ¹HNMR using an internal standard (MeNO₂). ^bIn the presence of 1 mol % of K₂PtCl₄.

Under the conditions using K₂PtCl₄ as a catalyst and one equiv (to enone 1) of potassium hydroxide in dioxane/H₂O at 70 °C for 1 h, several arylboronic acids 2m-2s were found to add to 2-cyclohexen-1-one (1a) to give the corresponding 1,4-addition products **3am–3as** in high yields (Table 2,¹¹ Entries 1-9). In addition to the unsubstituted phenyl group (2m), those substituted with electron-donating groups, 4-methyl (2n), 3-methyl (20), and 4-methoxy (2p), were successfully introduced in the presence of 1 mol % of the K₂PtCl₄ catalyst (Entries 1-4). Although the yields for phenyl groups substituted with electron-withdrawing groups, 4-trifluoromethyl (2q) and 4chloro (2r), are not high, owing mainly to the hydrolysis of the arylboronic acids under the reaction conditions, the yields were greatly improved by use of an excess amount (3 equiv to enone 1a) of the boronic acids (Entries 5-8). The addition of phenylboronic acid (2m) took place in high yields under standard conditions (1 mol % of K₂PtCl₄ and 1.5 equiv of 2m) for linear β -substituted α , β -unsaturated ketones, 1d and 1e (Entries 12) and 13), as well as some other cyclic enones, 1b and 1c (Entries 10 and 11). Interestingly, the 1,4-addition catalyzed by K₂PtCl₄ was observed only with aromatic boronic acids, not with olefinic boronic acids such as 1-heptenylboronic acid. This is mainly due to the hydrolysis of the alkenylboronic acid.


Table 2. Platinum-catalyzed 1,4-addition of arylboronic acids **2** to α , β -unsaturated ketones **1**: scope

R ¹ 1	$\begin{array}{c} O \\ R^2 \end{array} + ArB(OH)_2 \\ 2 (1.5 equiv) \\ 2m: Ar = Ph \\ 2n: Ar = -AMeC, \\ 2o: Ar = 3-MeC, \\ 2p: Ar = 4-MeC, \\ 2p: Ar = 4-CF_3C \\ 2r: Ar = 4-CF_3C \\ 2r: Ar = 2-MeC, \\ 2s: Ar = 2-MeC, \\ 2s:$	C 6H4 6H4 C6H4 C6H4 H4	K ₂ PtCl ₄ (1 mol %) KOH (1.0 equiv) Noxane/H ₂ O (10/1) 70 °C, 1 h	$Ar O I R^2$
Entry	1	2	Product	Yield/% ^a
1	0 1a	2m	$\mathbf{Ar} \mathbf{Sam} $	94
2	1a	2n	$3an (Ar = 4-MeC_6H_4)$	90
3	1a	20	$3ao (Ar = 3-MeC_6H_4)$	93
4	1a	2p	$\begin{array}{c} \textbf{3ap} \\ (Ar = 4\text{-}MeOC_6H_4) \end{array}$	89
5 6 ^b	1 a	2q	3aq (Ar = 4-CF ₃ C ₆ H ₄)	58 94
7 8 ^{b,c}	1 a	2r	3ar(Ar = 4-ClC ₆ H ₄)	38 78
9 ^b	1 a	2s	3as (Ar = 2-MeC ₆ H ₄)	88
10	о 1ь	2m	O Bh 3bm	85
11	0 1c	2m	Ph 3cm	96
12	n-C ₅ H ₁₁	2m	Ph O <i>n</i> -C ₅ H ₁₁ 3dm	87
13	O Ph 1e	2m	Ph O Ph 3em	96

It is remarkable that the present platinum-catalyzed reaction exhibits high reactivity toward β -substituted enones. It makes a striking contrast with the rhodium-catalyzed reaction where β substituted enones are much less feasible than β -unsubstituted ones for the 1,4-addition. Thus, a competition reaction of a 1:1 mixture of 2-cyclohexen-1-one (1a) and 3-buten-2-one (1f) with 2m in the presence of K₂PtCl₄ catalyst gave 3am, which results from 1a, as a major product,¹² while exclusive addition to 1f forming 3fm was observed in the reaction catalyzed by [RhCl(cod)]₂/KOH, which is one of the standard rhodium catalyst systems³ (Scheme 1).

In summary, we have developed a platinum-catalyzed 1,4addition of arylboronic acids to β -substituted α , β -unsaturated ketones. In the presence of potassium hydroxide in dioxane/ H₂O, the 1,4-addition was efficiently catalyzed by a small

Scheme 1. Comparison of substrate selectivity between the platinum and rhodium catalysts for the addition to 1a and 1f.

amount (1 mol %) of K₂PtCl₄ or PtCl₂ to give high yields of the corresponding β -arylketones.

Support has been provided in part by a Grant-in-Aid for Scientific Research, the Ministry of Education, Culture, Sports, Science and Technology, Japan (the Global COE Program "Integrated Materials Science" at Kyoto University).

References and Notes

- For reviews on 1,4-addition, see: a) F. López, A. J. Minnaard, B. L. Feringa, Acc. Chem. Res. 2007, 40, 179. b) A. Alexakis, C. Benhaim, Eur. J. Org. Chem. 2002, 3221. c) J. Christoffers, G. Koripelly, A. Rosiak, M. Rössle, Synthesis 2007, 1279.
- 2 M. Sakai, H. Hayashi, N. Miyaura, Organometallics 1997, 16, 4229.
- 3 R. Itooka, Y. Iguchi, N. Miyaura, J. Org. Chem. 2003, 68, 6000.
- 4 For reviews on rhodium-catalyzed reactions, see: a) T. Hayashi,
 K. Yamasaki, *Chem. Rev.* 2003, *103*, 2829. b) K. Fagnou,
 M. Lautens, *Chem. Rev.* 2003, *103*, 169. c) C. Bolm, J. P.
 Hildebrand, K. Muñiz, N. Hermanns, *Angew. Chem., Int. Ed.* 2001, *40*, 3284. d) J. B. Johnson, T. Rovis, *Angew. Chem., Int. Ed.* 2008, *47*, 840.
- 5 For early reports on the asymmetric 1,4-addition, see: a) Y. Takaya, M. Ogasawara, T. Hayashi, M. Sakai, N. Miyaura, J. Am. Chem. Soc. 1998, 120, 5579. b) T. Hayashi, M. Takahashi, Y. Takaya, M. Ogasawara, J. Am. Chem. Soc. 2002, 124, 5052.
- 6 a) C. S. Cho, S. Motofusa, K. Ohe, S. Uemura, S. C. Shim, J. Org. Chem. 1995, 60, 883. b) T. Nishikata, Y. Yamamoto, N. Miyaura, Angew. Chem., Int. Ed. 2003, 42, 2768. c) F. Gini, B. Hessen, A. J. Minnaard, Org. Lett. 2005, 7, 5309. d) X. Lu, S. Lin, J. Org. Chem. 2005, 70, 9651. e) T. Yamamoto, M. Iizuka, T. Ohta, Y. Ito, Chem. Lett. 2006, 35, 198. f) P. He, Y. Lu, C.-G. Dong, Q.-S. Hu, Org. Lett. 2007, 9, 343. g) H. Horiguchi, H. Tsurugi, T. Satoh, M. Miura, J. Org. Chem. 2008, 73, 1590.
- 7 a) E. Shirakawa, Y. Yasuhara, T. Hayashi, *Chem. Lett.* 2006, *35*, 768. See also: b) K. Hirano, H. Yorimitsu, K. Oshima, *Org. Lett.* 2007, *9*, 1541.
- 8 a) R. Shintani, T. Hayashi, *Chem. Lett.* 2008, *37*, 724. See also:
 b) E. J. Farrington, J. M. Brown, C. F. J. Barnard, E. Rowsell, *Angew. Chem., Int. Ed.* 2002, *41*, 169. c) E. J. Farrington, C. F. J. Barnard, E. Rowsell, J. M. Brown, *Adv. Synth. Catal.* 2005, *347*, 185.
- 9 R. B. Bedford, M. Betham, J. P. H. Charmant, M. F. Haddow, A. G. Orpen, L. T. Pilarski, S. J. Coles, M. B. Hursthouse, *Organometallics* 2007, 26, 6346.
- 10 Y.-X. Liao, C.-H. Xing, P. He, Q.-S. Hu, Org. Lett. 2008, 10, 2509.
- 11 Supporting Information is available electronically on the CSJ-Journal Web site, http://www.csj.jp/journals/chem-lett/.
- 12 The competition reaction of 1d and 1f under the same reaction conditions gave the corresponding 1,4-phenylation products 3dm and 3fm in 31% and 65% yields, respectively.